Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 10(12): 5, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34609478

RESUMO

Purpose: Animal models have demonstrated the role of dopamine in regulating axial elongation, the critical feature of myopia. Because frequent delivery of dopaminergic agents via peribulbar, intravitreal, or intraperitoneal injections is not clinically viable, we sought to evaluate ocular penetration and safety of the topically applied dopaminergic prodrug etilevodopa. Methods: The ocular penetration of dopamine and dopaminergic prodrugs (levodopa and etilevodopa) were quantified using an enzyme-linked immunosorbent assay in enucleated porcine eyes after a single topical administration. The pharmacokinetic profile of the etilevodopa was then assessed in rats. A four-week once-daily application of etilevodopa as a topical eye drop was conducted to establish its safety profile. Results: At 24 hours, the studied prodrugs showed increased dopaminergic derivatives in the vitreous of porcine eyes. Dopamine 0.5% (P = 0.0123) and etilevodopa 10% (p = 0.370) achieved significant vitreous concentrations. Etilevodopa 10% was able to enter the posterior segment of the eye after topical administration in rats with an intravitreal half-life of eight hours after single topical administration. Monthly application of topical etilevodopa showed no alterations in retinal ocular coherence tomography, electroretinography, caspase staining, or TUNEL staining. Conclusions: At similar concentrations, no difference in ocular penetration of levodopa and etilevodopa was observed. However, etilevodopa was highly soluble and able to be applied at higher topical concentrations. Dopamine exhibited both high solubility and enhanced penetration into the vitreous as compared to other dopaminergic prodrugs. Translational Relevance: These findings indicate the potential of topical etilevodopa and dopamine for further study as a therapeutic treatment for myopia.


Assuntos
Levodopa , Pró-Fármacos , Animais , Dopamina , Levodopa/análogos & derivados , Levodopa/toxicidade , Penetrância , Pró-Fármacos/toxicidade , Ratos , Retina , Suínos
2.
Eur J Med Chem ; 207: 112725, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920427

RESUMO

The 18 kDa translocator protein (TSPO) is a target for the development of imaging agents to detect neuroinflammation. The clinical utility of second-generation TSPO ligands has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Given the complex nature of TSPO binding, and the lack of non-discriminating high-affinity ligands at both wild type and A147T forms of TSPO, a series of novel TSPO ligands containing various heterocyclic scaffolds was developed to explore the pharmacophoric drivers of affinity loss at TSPO A147T. In general, N-benzyl-N-methyl-substituted amide ligands showed increased affinity at TSPO A147T, and a pyrazolopyrimidine acetamide containing this motif displayed low nanomolar binding affinities to both TSPO forms.


Assuntos
Compostos Heterocíclicos/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Receptores de GABA/metabolismo , Células HEK293 , Compostos Heterocíclicos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Pirazóis/química , Pirimidinas/química , Compostos Radiofarmacêuticos/química , Receptores de GABA/genética
3.
J Control Release ; 328: 263-275, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858075

RESUMO

Intravitreal delivery of antibody-based therapeutics has revolutionized the treatment of intraocular vascular diseases involving the retina and choroid. Unfortunately, limited durability requires frequent retreatment placing an enormous burden on patients. We sought to solve this problem with a novel approach that uses an anchoring molecule characterized by two key molecular properties: (1) non-covalent binding to an antibody-based therapeutic, and (2) retention in the vitreous cavity. As an initial proof-of-principle, we chose an anchoring molecule composed of agarose microbeads functionalized with an Fc-binding domain. Bevacizumab was chosen as the antibody-based therapeutic. In vitro experiments demonstrated that bevacizumab was maximally bound to this anchoring molecule within 1 h, and was competitively released upon exposure to either polyclonal human (p < 0.0001) or rat (p = 0.0017) immunoglobulins. In silico modeling predicted prolonged intravitreal retention of an antibody-based therapeutic in the presence of this anchoring molecule, which was confirmed by in vivo experiments with this initial anchoring molecule in rats. This anchoring molecule increased the intraocular half-life of bevacizumab from 5.8 days to over 18 days and maintained therapeutic concentrations for over 80 days. Despite showing no evidence of direct cellular toxicity, this anchoring molecule collected in the anterior vitreous, partially obscuring retinal visualization and eliciting a mild chronic microglial/macrophage inflammatory response. These studies provide a plausible approach to the development of novel non-covalent methods of binding, retention, and release of antibody-based therapeutics in the vitreous.


Assuntos
Retina , Corpo Vítreo , Inibidores da Angiogênese , Animais , Bevacizumab , Corioide , Humanos , Injeções Intravítreas , Ratos
4.
J Med Chem ; 62(17): 8235-8248, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31419132

RESUMO

Development of neuroinflammation agents targeting the translocator protein (TSPO) has been hindered by a common single nucleotide polymorphism (A147T) at which TSPO ligands commonly lose affinity. To this end, carbazole acetamide scaffolds were synthesized and structure activity relationships elaborated to explore the requirements for high-affinity binding to both TSPO wild type (WT) and the polymorphic TSPO A147T. This study reports high binding affinity and nondiscriminating TSPO ligands.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Carbazóis/farmacologia , Receptores de GABA/metabolismo , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carbazóis/síntese química , Carbazóis/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Receptores de GABA/genética , Relação Estrutura-Atividade
5.
Mol Oncol ; 12(9): 1623-1638, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099850

RESUMO

Breast cancer (BrCa) metabolism is geared toward biomass synthesis and maintenance of reductive capacity. Changes in glucose and glutamine metabolism in BrCa have been widely reported, yet the contribution of fatty acids (FAs) in BrCa biology remains to be determined. We recently reported that adipocyte coculture alters MCF-7 and MDA-MB-231 cell metabolism and promotes proliferation and migration. Since adipocytes are FA-rich, and these FAs are transferred to BrCa cells, we sought to elucidate the FA metabolism of BrCa cells and their response to FA-rich environments. MCF-7 and MDA-MB-231 cells incubated in serum-containing media supplemented with FAs accumulate extracellular FAs as intracellular triacylglycerols (TAG) in a dose-dependent manner, with MDA-MB-231 cells accumulating more TAG. The differences in TAG levels were a consequence of distinct differences in intracellular partitioning of FAs, and not due to differences in the rate of FA uptake. Specifically, MCF-7 cells preferentially partition FAs into mitochondrial oxidation, whereas MDA-MB-231 cells partition FAs into TAG synthesis. These differences in intracellular FA handling underpin differences in the sensitivity to palmitate-induced lipotoxicity, with MDA-MB-231 cells being highly sensitive, whereas MCF-7 cells are partially protected. The attenuation of palmitate-induced lipotoxicity in MCF-7 cells was reversed by inhibition of FA oxidation. Pretreatment of MDA-MB-231 cells with FAs increased TAG synthesis and reduced palmitate-induced apoptosis. Our results provide novel insight into the potential influences of obesity on BrCa biology, highlighting distinct differences in FA metabolism in MCF-7 and MDA-MB-231 cells and how lipid-rich environments modulate these effects.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Ácidos Graxos/metabolismo , Obesidade/metabolismo , Palmitatos/farmacologia , Triglicerídeos/biossíntese , Neoplasias da Mama/etiologia , Carnitina O-Palmitoiltransferase/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Lipase/biossíntese , Lipólise , Células MCF-7 , Mitocôndrias/metabolismo , Obesidade/complicações , Ácido Oleico/farmacologia , Fosforilação Oxidativa , Transdução de Sinais/efeitos dos fármacos
6.
Future Med Chem ; 8(10): 1111-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27284850

RESUMO

Filamenting temperature-sensitive mutant Z (FtsZ), an essential cell division protein in bacteria, has recently emerged as an important and exploitable antibacterial target. Cytokinesis in bacteria is regulated by the assembly dynamics of this protein, which is ubiquitously present in eubacteria. The perturbation of FtsZ assembly has been found to have a deleterious effect on the cytokinetic machinery and, in turn, upon cell survival. FtsZ is highly conserved among prokaryotes, offering the possibility of broad-spectrum antibacterial agents, while its limited sequence homology with tubulin (an essential protein in eukaryotic mitosis) offers the possibility of selective toxicity. This review aims to summarize current knowledge regarding the mechanism of action of FtsZ, and to highlight existing attempts toward the development of clinically useful inhibitors.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Animais , Bactérias/citologia , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/química , Citocinese/efeitos dos fármacos , Proteínas do Citoesqueleto/química , Descoberta de Drogas , Humanos , Camundongos
7.
Bioorg Med Chem ; 23(24): 7676-84, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616289

RESUMO

The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50µM and 100µM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid ß-oxidation in HuH7 hepatocytes.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/agonistas , PPAR gama/agonistas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células 3T3-L1 , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , PPAR alfa/metabolismo , PPAR gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...